Hybrid Optimizations: Which Optimization Algorithm to Use?
نویسندگان
چکیده
We introduce a new class of compiler heuristics: hybrid optimizations. Hybrid optimizations choose dynamically at compile time which optimization algorithm to apply from a set of different algorithms that implement the same optimization. They use a heuristic to predict the most appropriate algorithm for each piece of code being optimized. Specifically, we construct a hybrid register allocator that chooses between linear scan and graph coloring register allocation. Linear scan is more efficient, but sometimes less effective; graph coloring is generally more expensive, but sometimes more effective. Our setting is Java JIT compilation, which makes optimization algorithm efficiency particularly important. Our hybrid allocator decides, based on features of a method, which algorithm to apply to that method. We used supervised learning to induce the decision heuristic. We evalute our technique within Jikes RVM [1] and show on average it outperforms graph coloring by 9% and linear scan by 3% for a typical compilation scenario. To our knowledge, this is the first time anyone has used heuristics induced by machine learning to select between different optimization algorithms.
منابع مشابه
Adaptive Rule-Base Influence Function Mechanism for Cultural Algorithm
This study proposes a modified version of cultural algorithms (CAs) which benefits from rule-based system for influence function. This rule-based system selects and applies the suitable knowledge source according to the distribution of the solutions. This is important to use appropriate influence function to apply to a specific individual, regarding to its role in the search process. This rule ...
متن کاملDiversified Particle Swarm Optimization for Hybrid Flowshop Scheduling
The aim of this paper is to propose a new particle swarm optimization algorithm to solve a hybrid flowshop scheduling with sequence-dependent setup times problem, which is of great importance in the industrial context. This algorithm is called diversified particle swarm optimization algorithm which is a generalization of particle swarm optimization algorithm and inspired by an anarchic society ...
متن کاملA Discrete Hybrid Teaching-Learning-Based Optimization algorithm for optimization of space trusses
In this study, to enhance the optimization process, especially in the structural engineering field two well-known algorithms are merged together in order to achieve an improved hybrid algorithm. These two algorithms are Teaching-Learning Based Optimization (TLBO) and Harmony Search (HS) which have been used by most researchers in varied fields of science. The hybridized algorithm is called A Di...
متن کاملExergy , economy and pressure drop analyses for optimal design of recuperator used in microturbine
The optimal design of a plate-fin recuperator of a 200-kW microturbine was studied in this paper. The exergy efficiency, pressure drop and total cost were selected as the three important objective functions of the recuperator. Genetic Algorithm (GA) and Non-dominated Sorting Genetic Algorithm (NSGA-II) were respectively employed for single-objective and multi-objective optimizations. By opt...
متن کاملOnline Distribution and Load Balancing Optimization Using the Robin Hood and Johnson Hybrid Algorithm
Proper planning of assembly lines is one of the production managers’ concerns at the tactical level so that it would be possible to use the machine capacity, reduce operating costs and deliver customer orders on time. The lack of an efficient method in balancing assembly line can create threatening problems for manufacturing organizations. The use of assembly line balancing methods cannot balan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006